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1. INTRODUCTION

The investigation concerns the development and implementation of distributed optimization models and
related decision support tools for customized routing and scheduling of aircraft to support mission-critical
travel. The resultant software, called the DAKOTA system, includes an extensive database management
system, an advanced graphical user interface (GUI), as well as the mathematical optimization scheduling
procedures. DAKOTA has been installed for operational use by the United States Air Forces in Europe
(USAFE). The primary accomplishments of the project are the development of and solution procedures for
the optimization model, and the architecture and implementation of the procedures for schedulers at
distributed locations and interconnected by a computer network. The graphical user interface provides easy
and intuitive access to the various tools of the system.

2. THE AIRCRAFT SCHEDULING APPLICATION

The procedures developed apply to general settings in which there is a set of scarce resources that are
capable of carrying out tasks. In the passenger airlift application, the resources are aircraft, and the tasks
are passenger requests for travel support.

USAFE manages a fleet of aircraft that supports passenger travel in Europe, all of Africa, and much of the
former Soviet Union. Passengers include officers and government officials carrying out missions of critical
importance to the military.

A request for travel is specified by its point of origin, desired departure time, destination, desired arrival
time, number of passengers, and mission priority. The available fleet is composed of differing aircraft types
(in the USAFE problem alone, there are C-12, C-20, C-21, T-43, UH-IN and C-130 aircraft). The aircraft
vary widely in several aspects, including capacity, endurance and speed. Multiple schedulers create
missions that support the travel. This involves assigning contingents to aircraft, preparing flight itineraries,
coordinating activities with personnel responsible for crew scheduling, and communicating with passengers
being scheduled. Prominent problem characteristics are given below.

1) Several schedulers work semi-autonomously, but are
allocating commonly held airlift resources.

2) Aircraft can simultaneously service multiple travel
requests.

3) Travel requests have varying priorities.

4) Both immediate and advance and immediate travel requests
occur.

5) Some travel requests can pre-empt others, requiring that
rollback be supported.

6) Aircraft are constrained in capacity.

7) Aircraft types have differing characteristics, including
airspeed, endurance, and cost.




8) There are multiple aircraft of each type.

The decision support environment is inherently distributed, because multiple schedulers work in parallel,
each responsible for scheduling travel requests on dedicated aircraft. From an optimization view there are
several objectives: maximize the number of travel requests supported by priority class, minimize mileage
traveled, and minimize inconvenience to the passengers (extra stops and waiting for example). If the
schedulers work independently, they may each produce locally optimal results within their limited domains,
but the coalesced work is likely to be far from optimal.

The overall steps in mission scheduling are as follows;

Step 1. Select Travel Requests and Missions for Scheduling

Step 2. Select a Request Ordering Criterion and an Insertion Evaluation Criterion

Step 3. Order the Selected Requests Firstly by Priority Class, and, Secondly, by the Request
Ordering Criterion

Step 4. Loop through the Requests in Order. For each request and for each Mission, use
Constraint Propagation to calculate and Generate the Schedule Associated with Inserting the
Request in the best Feasible Location as Measured by the Insertion Location Evaluation
Criterion

Step 5 Formulate a Set Partitioning Problem from the Generated Schedules. Apply the Pricing
Heuristic to Select a Subset of schedules and Present them to the Scheduler.

3. CONSTRAINT PROPAGATION AND SCHEDULE OPTIMIZATION

A Client-server distributed computing model was adopted to provide the means of coordinating the work of
the schedulers. Within this paradigm, the computer used by each scheduler is handled as a "client". The
nserver" handles access to the database, and provides mechanisms for coordinating the activities of the
schedulers, with the goal of producing schedules that are close global optimality. The clients benefit, in
their local decision making, from the server's global view of aircraft allocation and contention for available
aircraft. The server functions range from as fundamental as ensuring that multiple schedulers do not
schedule the same aircraft for conflicting missions in the same time period, to coordinating a distributed
"bidding" process for aircraft time under contention. Each scheduler is supported by a sophisticated
mathematical optimization model that employs constraint propagation to generate the ramifications of time-
windows on travel requests and aircraft availability, and a set partitioning solver [Nygard, 1993; Sycara et
al, 1991; Sadeh, 1993]. These decentralized solutions are evaluated for resource contention by the server..
Steps 1-4 provide a collection of candidate solutions that can be formulated in a set partitioning problem.
The effectiveness of the procedure is, in part, due to the use of request ordering in Step 3, a technique that
has origins in the direct generation of schedules in job-shop scheduling problems.




The extended set partitioning problem (ESPP) is stated mathematically as follows:
Indices.

i=1,2,....,naircraft

j £ J(i), the set of feasible schedules for aircraft i

k=1,2,...,1 requests for travel

Data

C:

j = cost of schedule

vy = 1 if schedule j supports request k, O if not

p; = penalty cost for an idle aircraft

g; = penalty cost for overscheduling an aircraft

ry = penalty cost for not accommodating a travel request

s, = penalty cost for overaccommodating a travel request
Decision Variables

yj=1if schedule j is selected, O if not

u; = 1, if aircraft i is not utilized, 0 if utilized

o; >= 0 and integer, indicating overscheduling of aircraft 1

wy = 1, if reqeust k is not supported, O if supported

a; > 0 and integer, indicating multiple support for request k

Mathematical Formulation

Min Y, c;y; X(pithi +qi0y) 2riwe + s )
] f p

Subject to:
Y yjtu—o;=1 for each aircraft 1
jel @)
dvyjtwi—ap=1 for each travel request k
J

yj,ui,wk =0orl

;0 2 0 and integer




In a set partitioning model, the goal is to identify a collection of variables (columns, representing aircraft
missions) that partition the rows (representing travel requests) so that the objective function value is
minimized. Since the number of possible columns that could be generated is exponential in the number of
travel requests, it is important to develop criteria that restrict the number of columns generated, yet retain
columns that represent good schedules. A primary accomplishment of the project was the development of
mathematical methodologies for avoiding the generation of excessive numbers of columns. The article
attached in the Appendix provides a description of how the hierarchical constraints at several levels
propagate to neighboring levels and within the levels to dramatically limit the number of generated
columns, yet retain high quality solutions.

The set partitioning solver utilizes a marginal pricing procedure inspired by linear programming. The
procedure begins with an initial feasible solution in which each available aircraft is empty and flies no
mission. For each aircraft in turn, available passenger loads (columns) are priced for marginal potential to
improve the solution, and iteratively assigned to the aircraft. When assignments of passenger loads are
made, the aircraft receiving the load may, in effect, be usurping passengers previously assigned to another
aircraft. The process terminates when no further improvement is possible. The solution procedure is
shown below, in set notation which surpresses the details of data structures and the mechanics of solution
updates. The abstract data types could support alternative implementations.

Global: allLegs, allPlanes, allRoutes

findBestRoute(plane, routesPicked, route, incProfit, totProfit ) {
/* plane must not fly an already picked route */

route=none; bestRP=routesPicked;

for each r in allRoutes: plane flies r {
curP=profit(r);
if(curP< incProfit) break;

rp2=routesPicked;

for each s in routesPicked {
s2 =: legs(s2)==legs(s)-legs(r);
rp2=1p2-s+s2;
curP+=profit(s2)-profit(s)
}Fs#/

if(curP> incProfit) {
mcProfit=curP;
bestR=r;
bestRP=rp2;
¥
Y Fr ¥
} /* findBestRoute*/




findRouteSet(routesPicked, totProfit) {
/* find set of routes from scratch */

totProfit=0;
routesPicked= empty;

for each plane in planeSet {
/* order to be determined */

mncProfit=-1;
findBestRoute(plane, routesPicked, route, incProfit, totProfit);
yrxp ¥

} /* findRouteSet */

improveRouteSet(routesPicked, totProfit) {
/* tries to improve existing solution */

do {

converged=1;

for each plane in planeSet {

/* order to be determined */
/* save current data, remove route of plane */
oldRoute=routeOf(plane);
incProfit=profit(oldRoute);
routesPicked-=oldRoute;
oldTotProfit=totProfit;
totProfit-=incProfit;

/* try to find a better route */
findBestRoute(plane, routesPicked, newRoute, incProfit, totProfit);

if(newRoute==none) routesPicked+=oldRoute, totProfit=oldTotProfit;
else converged=0;
} /* plane */
} while(!converged && !done);
} /* improveRouteSet */




4. TESTING AND CONCLUSIONS

The procedure was extensively tested on randomly generated problems for verification purposes, and on
actual Air Force data obtained from the USAFE operation. A testing difficulty with actual data is that
good records are not available for travel requests that are not supported--only for travel that was supported
and the associated missions actually flown. With this difficulty understood, it is of interest that the testing
with actual data reveals that in most historical situations the passengers whose travel was supported could
have been accomplished with significantly fewer aircraft missions than were flown in practice. Had data
for unsupported travel requests also been available, it is possible and likely that ways for the fleet to have
supported the travel of additional passengers would have been identified by the model. The primary goals
of the project were met: an effective and efficient column generation procedure was developed, and a fast
solver and effective solver was implemented. Additional challenge lies in identifying ways in which the
efforts of individual schedulers can be more effectively coordinated, to produce schedules even closer to
global optimality. '
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APPENDIX

ARTICLE WHICH PRESENTS THE TECHNIQUES USED IN CONSTRAINT PROPAGATION

FOR GENERATING COLUMNS FOR THE SET PARTITIONING MODEL

AND FOR SUPPORTING MULTIPLE SCHEDULERS
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ABSTRACT

Resource allocation and scheduling problems involve
tasks which must be allocated to facilities (resources),
and scheduled for processing on those facilities. The
resources and the tasks to schedule may be subject to
constraints that restrict allocation possibilities and the
time frames during which tasks can be scheduled. This
work concerns resource allocation and scheduling
problems in which multiple schedulers work in parallel
and schedule resources held in common. The level and
structure of the coordination of the work of the
schedulers is a central issue. Models for maintenance.
propagation and utilization of global task and resource
information are presented and discussed with respect to
the airlift resource allocation and scheduling problem.

KEYWORDS
cooperative scheduling, resource allocation, distributed
computing

INTRODUCTION

Resource allocation and scheduling problems involve
tasks which must be allocated to facilities (resources),
and scheduled for processing on those facilities. The
resources and the tasks to schedule may be subject to
constraints that restrict allocation possibilities and the
time frames during which tasks can be scheduled. This
work concerns resource allocation and scheduling
problems in which multiple schedulers work in parallel
and schedule resources held in common. The level and
structure of the coordination of the work of the
schedulers is central issue. At one extreme, the
schedulers work in complete independence from each
other. In this situation, the scheduling agents will
produce schedules that are at best optimal only within
their domain of local responsibility, and the aggregate
solution may be far from global optimality. The other

extreme is full communication. coordination and
cooperation among all scheduler activities, the equivalent
of centralized single agent scheduling. This situation
permits the attainment of a globally optimal scheduling
solution, but may be impractical due to the workload
level being inherently distributed or too large to
centralize.

Although much research and development has been done
in scheduling and routing, there is little that concerns
developing schedules in a distributed multi-agent
environment [7]. In the case of centralized or single
agent scheduling, a host of issues involving contention
for resources never appear. The fundamental
complications in the multiple agent case are: i) currency
of information retrieved for local schedule optimization
and; ii) balance of resource allocation between local and
global concerns. The challenge of distributing
scheduling tasks among multiple agents who share
resources lies in the limited view of the current resource
needs and the intentions of peer schedulers. If an agent
does not have a global view of the system, a good local
resource allocation decision may have a negative global
impact. It may even be the case that partially completed
schedules may make a globally feasible resource
scheduling assignment impossible. When this occurs,
requests must be unscheduled, a process called schedule
rollback. Excessive rollback creates scheduler
inefficiency. To address the myopic view of scheduling
in the distributed case. we present a model which
provides, to the individual schedulers, information about
availability and system wide contention for resources.
Using this global information, a human scheduler or
scheduling algorithm can make local scheduling
decisions which are also good globally.




In scheduling executive airlift, several schedulers are
responsible for arranging travel for executives who
submit requests composed of one or more origin-
destination pairs, called request legs. Each scheduler is
responsible for a subset of travel requests and develops
aircraft routes and schedules for them subject to
constraints on the aircraft fleet and on the requests
themselves. Some constraints are operational in nature
and are due to physical and temporal restrictions on the
aircraft and crews. Travel speed, aircraft capacity,
endurance. and crew duty hours are examples of these.
Constraints imposed by the requests include contingent
size, “hard” time windows on departure and / or arrival
times. and “soft” constraints concerning inconvenience to
the travelers. Hard time windows are inviolate. Soft
time windows can be violated at a penalty cost. Other
constraints are imposed by the schedules developed by
peers.  The schedulers, working semi-autonomously,
attempt to obtain the best possible schedules for the
requests for which they are responsible, without violating
existing constraints. Globally, the problem is to share
the aircraft, possibly simultaneously, among requests for
travel in a manner which optimally supports the requests.

We present an approach to single agent scheduling which
characterizes the allocation and scheduling of aircraft
among requests for travel as a set partitioning problem by
constructing feasible assignments of travel requests to
aircraft and representing them as set partitioning
columns. Each column represents the feasible
assignment of an ordered subset of the set of unscheduled
request legs to a specific aircraft mission. Algorithmic
tools for constraint propagation [2,5], variable ordering
and value ordering [6] are employed to assist in manual
schedule construction or to provide automatically
generated solutions at the local scheduler level. Next., we
focus on distributed computing models for including
global information in local decision making. In this
context, where the resources of interest are aircraft
missions and the activities are requests for travel, we
discuss three distributed computing models for resource
allocation and scheduling. “Autonomous peer process.”
“Cooperative peer process,” and “Client-server” models
are presented in increasing order of extensiveness of the
global information and coordination available to the local
schedulers. For each model, mechanisms for
maintaining global resource information and distributing
it to the appropriate agents is described. Finally, we
describe a paradigm for the distributed scheduling of
aircraft missions to service travel requests which uses
global information in making local scheduling
assignments.

This work makes significant contributions in two areas.
A constraint satisfaction based heuristic insertion
algorithm is developed for single agent airlift resource
allocation and scheduling.  This algorithm adapts

concepts from Dial-a-Ride (DARP), Job Shop Scheduling
(JSSP) and Critical Path Methodology (CPM) to the
problem.  Methods for constraint propagation and
constraint satisfaction, which are key elements in our
strategy, are combined with request insertion to
incrementally develop feasible schedule assignment
representations. These representations may be evaluated
by a set partitioning heuristic to produce schedules which
meet operational objectives while satisfying constraints
on both the aircraft and on the requests. The algorithm
is extended to a multiple scheduling agent paradigm
supported by a distributed model which facilitates system
wide propagation of global information and provides a
mechanism for effectively communicating resource
requirements and contention. Through this model, we
contribute to an improved understanding of the means of
maintaining, communicating and utilizing global
resource information to optimize schedule construction in
a distributed setting. This decision support environment
is representative of varied problem solving applications
that can benefit from cooperative allocation and
scheduling of resources, such as job shop scheduling and
other manufacturing problems.

Software development and testing for this work is being
done on DEC 3000 and Sun SPARC 10 Unix
workstation computers. The software is portable to any
Unix system adhering to the proposed Open Systems
Foundation (OSF) standard. Code is written in ANSI C
and C++ Database support for the maintenance of
requests, scheduled missions, and supporting information
is provided by DESc [3], a locally developed database
management system for scheduling applications. The
inter-process communication uses flow-controlled,
connection-oriented Unix network sockets. The network
of Unix color graphics workstations employing the
TCP/IP network protocol suite. Work on this project is
being done at North Dakota State University under Air
Force Office of Scientific Research (AFOSR)
sponsorship.

DEFINING ARASP

The definition of the Airlift Resource Allocation and
Scheduling Problem (ARASP) is motivated by a need to
identify the salient features of the executive airlift
scheduling process. Number of scheduling agents, level
of agent cooperation and coordination, request (task)
characteristics and  constraints. and  resource
characteristics and constraints are feature categories
which characterize the structure of the problem.

Scheduling Agents

For small enterprises it may be reasonable for a single
agent to schedule all travel requests. However, larger
enterprises require that multiple scheduling agents share
the task; each scheduler assuming responsibility for
scheduling a subset of the requests for travel. Agents




may be located in close proximity to each other, so that
personal interaction can guide the sharing of resources.
On the other hand, agents and resources may be
geographically separated within an installation or even
throughout the world. In order to be truly flexible in our
problem solution, we assume that multiple schedulers,
linked by a computer network, work in parallel to service
distinct requests by allocating commonly held aircraft
TEesources.

Support for Cooperative Scheduling

The efficiency of individual schedulers and the global
effectiveness of the schedules they create are primary
concerns in the design of computer support for the
allocation and scheduling process. The individual
schedulers and the scheduling group, as a whole, benefit
from the sharing and coordination of information
regarding system wide resource availability and
contention. Two identifiable elements of computer
support for the system are:

* A computer network model should be
implemented to encourage sharing of global
information regarding resource availability.
coordinate global resource allocation and
support cooperative resource use.

* Algorithmic support at the level of the
individual scheduler should provide
optimization and decision support tools for
schedule construction and for evaluation of
performance measures of resulting schedules.

Requests Characteristics

Travel requests may be composed of multiple request legs
(departure / arrival pairs), but generally represent a
single contingent. Each request leg has associated time
window information, described in terms of earliest/latest
pickup and earliest/latest delivery. The bounds on these
windows may be designated as soft or hard. depending on
if they are negotiable or inviolate, resp.

The contingent size may very as individual passengers
join or leave the group between stops on the itinerary. but
when physically possible. the entire contingent will travel
on the same aircraft. When contingent size precludes
service by one craft, it is assumed that multiple requests
will be submitted. For passenger convenience and
security, it is considered infeasible to require a contingent
to change aircraft during a request leg. Individual
request legs, however, may be supported by different
aircraft. ~ Multiple requests (contingents) may be
simultaneously supported by the same aircraft. Thus.
stops during a request leg are permitted.

Requests are both immediate and advance notice. They
may have varying priorities, which can influence the
order in which they are scheduled. Since operational

goals may allow pre-emption and since cancellations may
occur, a means for unscheduling previously supported
requests and rollback of schedules must be provided.

Resource Characteristics

The fleet of supporting aircraft may be non-
homogeneous, composed of aircraft with varied capacity,
air speed, and endurance. For the specific application,
we consider small aircraft in the six to fifteen seat
category. These operational constraints and others
regarding flight and service time must be enforced,
though there should be means to override them to provide
“what-if" capability the length of time an aircraft may
remain in service, required maintenance schedule, and
flight, duty and rest time for crews suggest constraints on
aircraft that can best be reflected by specifying our
resource to be an aircraft mission. The aircraft mission
becomes a loosely defined mechanism for ensuring that
an aircraft returns to its home base at required intervals
and allows for controlling the amount of time it is in
service, in maintenance, specially allocated or
unavailable for general scheduling. By focusing on the
aircraft mission as our resource. we also provide
improved granularity for viewing and manipulating the
fleet schedule.

The above characteristics and constraints describe the
paradigm for which we propose heuristic algorithms that
may be used as decision support tools or as tools for
automated scheduling. We then propose a model for
cooperative resource allocation and scheduling in which
global resource information is maintained and distributed
to individual scheduling agents. In addition to providing
resource information, the model provides a means for
enabling negotiation for resources and for insuring the
integrity of global resource schedules.

AN ENVIRONMENT FOR COOPERATIVE SCHEDULING

Globally, the goal of our system is to efficiently allocate
and schedule resources to optimally support a set of
travel requests in a manner which is consistent with the
constraints defined by the enterprise and by the
customers. To achieve this goal. our system maintains a
representation of the evolving constraints on available
resources and provides this information to agents in a
distributed scheduling environment.  The two key
elements in the system are algorithmic support for the
individual scheduler and coordination of a scheduling
effort  distributed among multiple  schedulers.
Fundamental to our approach to both of these concerns is
the characterization of resource availability in terms of
the constraints placed on those resources by the
enterprise, by the tasks for which support has already
been scheduled and by resource requirements of
individual schedulers for meeting the demands of the
tasks they must schedule. We form a constraint
hierarchy whose root represents constraints on the entire




aircraft fleet and whose leaves are constraints on
individual travel request legs.

At the global level, we maintain information, in the form
of fleet, aircraft and mission constraints. These
constraints represent the flexibility of resources to
accommodate additional requests for travel or temporal
schedule shifts. They are a function of operational
considerations and of constraints on request legs already
being supported by the given mission.  Temporal
constraints can be intuitively represented as time
windows on the activities of the resource for supporting
the tasks assigned to it. This global information is
provided, system wide, to schedulers as they consider
resources to meet the needs of their unscheduled travel
requests.

Individual schedulers select resources, guided by aircraft
characteristics. customer needs and preferences, resource
availability and schedule flexibility. The schedulers are
required to request a resource and an associated feasible
time window before making schedule changes to it. This
provides a mechanism for determining the availability of
a resource and for informing peer schedulers of resource
use intentions. It also imposes additional constraints in
the constraint hierarchy which will protect the reserved
mission and associated reserved time window while the
scheduler is making changes to it at the local level. By
imposing these additional constraints, the local scheduler
is essentially asking for a lock on a resource over a
commonly agreed upon period of time. Only after the
reservation is granted, can the local scheduler be certain
that changes to the local schedule of the resource will not
affect nor be affected by changes to the rest of the
hierarchy. It is this step that bridges the gap between the
individual, autonomous scheduler and the group of
cooperative schedulers who share resources. Figure 1
illustrates the propagation of constraints throughout the
constraint hierarchy, both within and between levels.

Fleet Availability Constraints

i

i Adrcraft 1 A\ vailability ‘

["Aircraft 1 Availability
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Figure 1: Propagation of time window constraints in ARASP. Effects of constraints
are propagated up and down the hierarchy, as well as laterally through a level.
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Resources made available at the individual scheduler
level and the requests the agent must schedule onto them
are also characterized by their constraints. The resources
reserved by the scheduler cannot be extended beyond the
constraints negotiated at the time they are acquired.
Feasible assignments of tasks to resources involves
producing a schedule which simultaneously satisfies the
constraints on both the task and the resource. Thus, the
search for feasible, and ultimately optimal, local schedule
assignments is directed by those constraints imposed on
the resources and on the tasks.

The degree to which the distributed model imposes
restrictions on the acquisition of resources and their
associated time windows determines the involvement of
global decision making in the local scheduling process.
Potential exists to provide a spectrum of control from the
simple locking approach described above to an autocratic
system that dictates which resources should be utilized to
service subsets of travel requests. Our approach relies on
the cooperative nature of the schedulers to negotiate
reasonable time windows for their reserved resources.

The propagation of constraints in the constraint
hierarchy is pursued further in the discussion of support
for the individual scheduler. There we give an overview
of the algorithmic support for local determination of
resource schedules.

SUPPORT FOR THE INDIVIDUAL SCHEDULER
Whether there is a single scheduling agent or multiple
cooperative schedulers, we view the actual assignment of
a task to a resource as being done by an individual agent.
To simplify our discussion, we concentrate on the
temporal restrictions due to mission time windows and
request leg time windows. The foundation of our
scheduling process in either mode, therefore is a
mechanism for a single agent to schedule a selected set of
request legs onto a set of time constrained aircraft
missions.

Schedules for resources may be incrementally constructed
over time. with actual scheduling done to meet specific
lead time requirements of some tasks. The philosophy
that guides our approach to scheduling of request legs in
the executive airlift problem is that previously scheduled
requests should be minimally impacted by the addition of
new. unscheduled, requests to a common mission. With
this as a primary constraint on creating request / mission
associations, our heuristic uses an insertion approach to
create assignments of request legs to missions which do
not violate time window conditions on existing request
leg originations and terminations. Barring violation of
capacity constraints, a request leg may be serviced by an
existing mission leg, or it may be necessary to create
additional stops in the mission schedule to accommodate
the request. Time window bounds for arrivals and




departures of individual request legs may be categorized
as “soft” or “hard.” A hard time window bound is one
whose violation will cause an infeasibility in the
constructed mission. Insertion of mission legs to service
request legs which would violate existing time window
constraints are deemed infeasible and are not considered
further by the algorithm. Violation of soft time window
produces inconvenience to the customers, but does not
cause infeasibility. A request leg assignment causing a
mission to violate a soft window bound for one or more
of its request legs will incur a penalty for doing so, which
will reduce the offending assignment’s value.

Given a set of resources (aircraft missions and
corresponding operational constraints) and a set of tasks
(unscheduled flight requests composed of one or more
request legs), the single agent scheduling algorithm
performs the following activities:

e Orders request legs for insertion. based on
schedule performance considerations,

e Generates Set Partitioning Problem (SPP)
columns  representing  feasible  ordered
insertions of requests into aircraft schedules
and their associated values, and

e Solves the Set Partitioning Problem to produce
updated aircraft schedules.

The ordering of the travel request legs may be viewed as
preprocessing, while the Set Partitioning Problem
solution performs a postprocess function. The heart of
our algorithm focuses on the propagation and satisfaction
of constraints to generate representations of feasible task-
to-resource assignments. Here, we focus on the ordering
and column generation components of the process.

Variable Ordering

Travel requests can be scheduled as they are received or
may be short-term or long-term batched. Since insertion
algorithms are inherently myopic, the order in which
insertions are performed is critical to the quality of the
resulting schedules.  Batching requests allows the
application of variable ordering [6] techniques to
prescribe a request leg order for insertion consideration.
The particular ordering employed depends on the
operational and strategic goals of the scheduling effort.
“Best Fit” ordering is an attempt to increase utilization of
resources on flight legs which are already scheduled.
Those requests which may be serviced by existing flight
legs are considered for insertion early, with a preference
given to those which will most nearly fill an aircraft for
the request leg path. “Earliest First” ordering can be
used to delay scheduling of those requests farther out on
the scheduling horizon and thereby maintain flexibility of
schedules until more requests for that time frame are in
hand. These schemes may be combined or used

separately to address those measures of performance
deemed most critical to the enterprise.

The order given by the variable ordering process to the
set of unscheduled request legs under consideration is the
one which will dictate the order in which scheduling
attempts for the requests will be made by the insertion
heuristic. Our insertion algorithm views this ordered set
of request legs as a sequence and determines
subsequences of it which may be feasibly assigned to
each resource.

Once a request leg order has been determined for
scheduling, the insertion process can begin. If it is
determined that a particular request leg may be supported
by a given mission, the point of insertion into the
existing schedule remains to be determined.

Column Generation

At the local scheduler level, mission schedules are
represented as event lists. Each even corresponds to a
take-off or landing of the aircraft. either for service or to
support a travel request. To each event there corresponds
time window constraints (ET. LT). These bounds can be
viewed as an extension of the constraint hierarchy,
propagated down from the time constraints on the
mission and up from the time windows on the requests
being serviced by the event. The ET and LT values for
an event are created and maintained in a manner similar
to the forward pass and backward pass for maintaining
ET and LT values in the Critical Path Method (CPM)
[4]. Each insertion of a travel request onto a mission
results in possibly creating new events, adding the
constraints imposed by the new request to those already
in place, and recalculating the ET and LT for events in
the event list, using the forward and backward method of
CPM to propagate constraints across the bottom level of
the constraint hierarchy. A time window becomes
violated by an insertion when it produces an ET value for
an event which is greater than its corresponding LT
value. Only those insertions which do not violate any of
the existing time windows for events are feasible. If an
insertion of a request is deemed feasible, value ordering
is performed on the values associated with all feasible
insertions of the request leg into the resource schedule.

The generation of feasible task-to-resource assignments
can be viewed as a constraint satisfaction problem.
Assignments which are feasible are exactly those which
can be performed without violating the constraints on the
task. on previously scheduled tasks. or on the resource.
From the sequence of unscheduled request legs, a SPP
column and associated cost are generated for each
subsequence which may be feasibly assigned to a specific
resource. As assignments of tasks to resources are
considered, the effects of time windows for the new tasks
propagate to those of existing flight legs. This alteration




of flexibility of aircraft mission, within the allowable
bounds of the resource. The effects of committing to a
particular change in a mission schedule will propagate to
the time windows of other missions for the same aircraft
and ultimately to the schedule for the entire fleet.
Likewise, alterations in the scheduling constraints at the
fleet level affect the time windows for take-offs and
landings to accommodate a particular request leg. Thus
the fleet schedule structure may be viewed as a dynamic
model, in which alterations at any level propagate
throughout the entire system, affecting constraints on
each component. Only those alterations that preserve the
satisfaction of all component. Only those alterations that
preserve the satisfaction of all previously established
constraints are considered feasible. Figure 1 illustrates
how the insertion of a request leg on a mission can
ultimately affect the entire fleet schedule.

The upper levels of the hierarchy in figure 1 represent
information which must ultimately be available globally
in a distributed paradigm. We assume, in our insertion
heuristic, that the schedule and allowable time window
for a specific mission are a local concern at the point
when scheduling takes place. This allows the scheduling
agent the autonomy needed to manipulate the schedule
locally within constraints imposed at the time the mission
is selected for scheduling. It further allows us to develop
an insertion heuristic for local scheduling which may be
extended implemented within a distributed scheduling
system.

DISTRIBUTED COMPUTING MODELS FOR ARAS

A model for decentralized airlift resource allocation and
scheduling (DARAS) must provide basic information
support needed for the individual schedulers to perform
their tasks. Moreover, integrity of data must be
maintained as reservations are created and edited by
multiple schedulers. The model must provide a means of
performing distributed scheduling which is both efficient
for the agent and effective in producing globally desirable
schedule structures. Three basic models that provide
varied facilities for information sharing are discussed.
These are referred to as the “Autonomous peer process”,
“Cooperative peer process”, and “Client-server” models.
These three models are listed in order of increasing
suitability for implementing a distributed decision
support system for multi-agent scheduling. We discuss
them in general and then make recommendations for
DARAS, in particular.

Autonomous peer processes

In this model all schedulers execute identical processes
which allow them to enter new requests for travel,
create/edit reservations for aircraft and generate reports
by directly accessing the underlying database, as if each
scheduler was the exclusive scheduling agent.
Acquisition of available aircraft resources is permitted on

a first come, first served basis, and individual schedulers
have no information provided by the software support
environment concerning resource needs of other
schedulers. The advantage to this model is that
algorithmic extensions from the single agent case are
simple. This mode! is sometimes employed when
multiple schedulers are stationed in close proximity to
each other, and use verbal agreements to prevent much
contention from arising. A disadvantage is a need for a
sophisticated database management system to maintain
data integrity during concurrent use of the system by
multiple schedulers. Heavy contention for resources will
cause inefficient scheduling and may cause scheduling
rollbacks, due to lacking or incomplete knowledge of
concurrent scheduling efforts. The lack of a global view
limits possibilities for providing meaningful algorithmic
decision support in the scheduling process.

In order for individual scheduling processes to be
informed of potential contention for a given aircraft,
communication between all processes must be established
and information about resources of mutual interest must
be shared between the appropriate processes. Lacking
this communication, efforts to minimize schedule
rollback will require a locking mechanism to reserve
aircraft, thereby prectuding other agents from accessing
them. Since the scheduling process may take
considerable time, locking is not scalable and the model
was rejected as an alternative for the current work.
Requiring that each scheduling agent communicate
scheduling intentions with every other scheduler places
an undue burden on both the schedulers and the
communication network. It is clear that providing
mechanisms for sharing of resource requirement
information between schedulers requires a model in
which relevant data is easier to collect, maintain, and
disseminate.

Cooperative peer processes

This model was proposed by Sycara, et. al. [7] for the
distributed job shop scheduling problem. In that
environment, shop “stations” or machines, each able to
service a single requested task at a time, are scheduled to
complete “orders” composed of requirements for
processing by one or more stations. The basis of the
model is the establishment of a mechanism which allows
processes to communication resource needs and
scheduling intentions with other processes that share a
need for particular resource.

In terms of airlift scheduling, where a resource may
service several requests simultaneously, we make each
scheduler process a “node” in a distributed scheduling
system. Each scheduler agent becomes the resource
manager of a set of aircraft and is the only agent enabled
to make changes to the schedules of those aircraft it




controls. An agent considering employing a particular
aircraft, in a schedule being constructed locally, must
request current information on the availability of that
resource from its manager, and in SO doing must
“register” an interest in that aircraft. The resource
manager then updates the aggregate demand information
for that particular aircraft and provides it to all registered
scheduling agents. Finally, any scheduler requiring a
resource must send a request to the resource manager
who, up receipt of a reservation request, verifies that the
aircraft is available. makes appropriate database accesses
to update schedules, and then shares the updated
information with the “interested” schedulers. This model
can clearly be implemented on a single multi-processing
machine, but can also be extended to a network of
computers.
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Figure 2: An example of the connections required for a fully connected four-node
cooperative peer process network.

As an example, Figure 2 shows the communication
connections for a fully connected network of four
scheduler nodes. The number of connections maintained
is O(n?), where n is the number of participating nodes.
Communication can be minimized by only
communicating information from a resource manager to
those nodes which have indicated an interest in a
particular aircraft. The model also makes fewer demands
on the database management system, for concurrency
control, by requiring that only an agent responsible for a
resource can update its schedule and related information.
The underlying database can be cither centralized or
distributed.  Support for local decision making with
attention to global resource needs becomes achievable.
However the implementation of global optimization
strategies are difficult because there is no view which
encompasses all aircraft schedules. The loss of
communication with one or more of the nodes in the
network makes the resources maintained by the node(s)
inaccessible to the rest of the schedulers. This is not
likely in the single machine, multiple process case. but
becomes an issue in the decentralized case. The problem
can be mitigated by having backup nodes which take over
the “down” mnodes responsibilities, which further
complicates the model.

Client-server model

In this model, the server is a process that waits to be
contacted by a client process, and then services the
client’s request. In the context, of the executive airlift
application, the client processes are the scheduler
application processes, and the server acts as a resource
manager. The server maintains allocation and
contention information about aircraft, seats and times
each craft is available, providing it to those scheduling
agents requesting a particular resource. It controls
access, maintains aggregate demand information, and
communicates with “interested” nodes for all aircraft.
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Figure 3: The client server model with n (scheduler) clients.

As with the cooperative peer processes model, scheduling
agents are required to register intentions with the server
before being granted access to or information about a
particular aircraft and its schedule. Reservation requests
for updating an aircraft schedule are sent to the resource
manager, which has sole access to the database and can
provide update information to those schedulers concerned
with that particular resource. As figure 3 indicates, the
number of communication connections in this topology is
O(n) for a model with n clients. The server process can
provide either iterative or concurrent service to their
clients. Each type has advantages and disadvantages,
depending on the application.

The Iterative Server

The iterative server queues messages from clients and
processes them in a FIFO manner. This model works
well when it is known that processing a message takes a
small, relatively constant amount of time. If the number
of simultaneous accesses to the server increases with the
number of clients, this model will not scale well. Long
waits in queue or refused messages will degrade
performance at client nodes. However, there are
advantages to this model, if the client access load is
relatively low, as is the case when clients obtain resource
information from the server access to the data base
requires a more simple form of concurrency control in
the DBMS. The iterative server handles all requests for
resource availability and contention and is therefore in an
ideal position to maintain a current view of resource
allocation. This type of server is well suited for the
implementation of global optimization strategies in
distributed systems.




The Concurrent Server

A concurrent server, upon receipt of a client request,
begins a new (child) process, dedicated exclusively to the
service of the request. Upon completion of its tasks, the
child process terminates. The parent server process is
therefore available to accept requests from clients while
other requests are being serviced. In this way it is
* possible to service multiple client requests. In the case of
a large number of client processes attempting
simultaneous access to the server, this model will, on the
average, begin the service to a client in a more timely
fashion. Database accesses will, however, occur from
one of multiple server clones and will require greater
concurrency control than the iterative server model.
Furthermore, unless a mechanism for sharing up-to-date
information between the server clones is implemented,
management of a global view of resource availability
becomes more difficult, and hence it is difficult to
provide global optimization support. ~ This can be
mitigated by the implementation of shared memory
access and a global optimizer process accessed by all the
server clones.

The Client Server Paradigm for DRAS

Of the three models investigated, the client-server model
provides for the most information being distributed to
appropriate nodes with the least amount of
communication overhead. In the airlift scheduling
environment, where we expect a relatively small number
of agents working simultaneously, the iterative server is
the most appropriate, due to the natural way in which
global optimization strategies can be implemented.
Tnherently a network model. the client-server model can
be naturally implemented on either a single machine or a
network of machines. The communication protocol for
this model on a single machine is simple because
communications failures between processes are not an
issue. When extending to a network, the protocol must
take into account failure at a node and network failure,
though node failure is not as damaging as in the
cooperative peer process model. If the server is expected
to make all database accesses, the protocol must be
designed to accommodate a wide range of server
responses. These can include complete aircraft
reservation schedule structures, for all aircraft, for a
given schedule period. A significant challenge to
implementing this model is providing the server and
clients with strong decision support and optimization
strategies.

Implementation of the Client Server Model for DRAS
A fundamental motivation for choosing the client server
model is the desire to provide a global view to the
scheduling process and to control access to commonty
utilized resources. Database accesses by clients, either
for information about resources under consideration or

for database update, are therefore a natural point at
which to introduce the separation of client and server
responsibilities. The client process continues to function
at the local level as it does in the single agent paradigm,
however all database activities are now directed to the
server process. By empowering the server with ultimate
control of database accesses, we insure both database
integrity and the ability of the server to maintain a global
view of the demand for resources.

In designing the single agent model, we anticipated the
extension to a networked environment and consequently,
we implemented a design which would seamlessly
incorporate a network interface. The clients’ database
access function calls are intercepted by a network
interface which redirects them to the server process.
Figures 4 a) and b) demonstrate the insertion of the
network interface and server process into the direct
database access for the autonomous scheduler.
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Figure 4: The unobstrusive extension of the local single scheduler application to the
distributed paradigm involves inserting client and server network interfaces between
the application’s DB access function call and the DB access function.

Once the network interface has been established, it is
possible for the single scheduling agent client to make
the same database requests and updates that were made
directly. Now, however, the server is responsible for
intercepting those requests and making accesses to the
database. This puts it in a position to coordinate
allocation of shared resources and propagate updated
information regarding resource availability ~and
constraints to its clients. The level of coordination
provided by the server may vary from simple advisory
information on resource availability and contention to
autocratic  determination  of  specific  resource
assignments. At minimum, a reservation system, or




